Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Yucang Liang, Maochun Hong* and Rong Cao

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China

Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.041 wR factor = 0.121 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrakis(2,5-pyridinedicarboxylato)tetrazinc(II) octahydrate

A zinc(II) coordination discrete complex, $[Zn_4(pydc)_4(H_2O)_8]$ (pydc = 2,5-pyridinedicarboxylate, $C_7H_3NO_4$), has been prepared from the hydrothermal reaction of [Zn(CH₃COO)₂]--2H₂O and H₂pydc in H₂O. The complex exhibits a rectangular structure formed from four zinc(II) and four pydc bridging ligands. The rectangular structure is interconnected by hydrogen bonds to form a three-dimensional network.

Received 26 February 2001 Accepted 7 March 2001 Online 16 March 2001

Comment

In the last few years, much effort has been devoted to the use of transition metal ions with exo-bidentate ligands, such as polypyridyl or pyrazines and 1,4-benzenedicarboxylate, to generate polymeric metal-organic coordination polymers with two- or three-dimensional networks. Very recently, Goodgame et al. (1999) reported a new type of metal-organic large-pore zeotype, *i.e.* $[Zn(dimto)_2]_n \cdot nDMF$ [dimto = 2,4,6-tri(1-imidazolyl)-1,3,5-triazin-2-one], which was generated from zinc bromide and 2,4,6-tri(1-imidazolyl)-1,3,5-triazine (timt). Li et al. (1999) reported a porous polymer, $[{Zn_4O(bdc)_3}]$ - $(dmf)_8(C_6H_5Cl)]_n$ (bdc = 1,4-benzenedicarboxylate), which could absorb and desorb nitrogen gas. Several infinite twoand three-dimensional coordination polymers with 1,4benzenedicarboxylate as a bridging ligand have been prepared (Hagrman et al., 1999; Li et al., 1998; Groenman et al., 1999). However, reports on coordination polymers based on a metal cluster framework have not received much attention in this respect, although several three-dimensional polymers consisting of a metal oxide interconnected by organic molecules have been reported (Liang et al., 2000). Herein we report a coordination complex, $[Zn_4(pydc)_4(H_2O)_8]$ (pydc = pyridine-2,5-dicarboxylate), (I), prepared from hydrothermal reaction of [Zn(CH₃COO)₂]·2H₂O and H₂pydc in H₂O.

© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1

The structure of [Zn₄(pydc)₄(H₂O)₈]. Displacement ellipsoids are plotted at the 50% probability level.

Crystallographic analysis reveals that the compound is a discrete $[Zn_4(pydc)_4(H_2O)_8]$ molecule, in which the four Zn atoms are connected by four pydc ligands through bridges forming a rectangular structure, as shown in Fig. 1. The molecules are connected by hydrogen-bonding interactions involving the carboxylate groups and H₂O, with an average O···O distance of 2.708 Å, to form a three-dimensional network, as shown in Fig. 2. The coordination environment of the zinc centre in the complex is distorted bipyramidal {ZnO₄N}, of which one N atom and two O atoms are from the pydc ligand and the other two O atoms are from water molecules. Zn-O bond lengths are in the range 1.985 (4)-2.107 (3) Å and the Zn-N distances range from 2.070 (4) to 2.113 (3) Å.

Experimental

A mixture of $[Zn(CH_3COO)_2].2H_2O$ (0.220 g, 1.0 mmol), H₂pydc (0.167 g, 1.0 mmol), and H₂O (16 ml) in a molar ratio of ca 1:1:890 was sealed in a 25 ml stainless-steel reactor with a Teflon liner. The reaction system was heated at 443 K for 72 h. Slow cooling to room temperature yielded prismatic colourless crystals of the complex, which were collected by filtration.

2472 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.028$

 $\theta_{\rm max} = 25.0^\circ$

 $h = -8 \rightarrow 8$

 $k = -8 \rightarrow 8$

 $l = -21 \rightarrow 15$

Intensity decay: none

Crystal data

 $[Zn_4(C_7H_3NO_4)_4(H_2O)_8]$ Z = 1 $M_r = 1066.02$ $D_x = 2.061 \text{ Mg m}^{-3}$ Triclinic, P1 Mo $K\alpha$ radiation a = 7.0512 (6) Å Cell parameters from 423 b = 7.3853 (6) Å reflections $\theta = 8.1 - 19.6^{\circ}$ c = 18.4652 (14) Å $\alpha = 90.022 (1)^{\circ}$ $\mu = 2.87 \text{ mm}^{-1}$ $\beta = 96.985(1)^{\circ}$ T = 293 (2) K $\gamma = 115.630(1)^{\circ}$ Prism, colourless $V = 859.02 (12) \text{ Å}^3$ $0.36 \times 0.18 \times 0.12 \text{ mm}$

Data collection

SMART CCD diffractometer ω scans Absorption correction: empirical (SHELXTL; Sheldrick, 1997) $T_{\min} = 0.350, \ T_{\max} = 0.709$ 4717 measured reflections 3021 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0701P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.0949P]
$wR(F^2) = 0.121$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3021 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
303 parameters	$\Delta \rho_{\rm min} = -1.22 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Zn1-O3	2.009 (3)	Zn2-O1	1.985 (4)
Zn1–O23 ⁱ	2.020 (3)	Zn2-O2	2.010 (4)
Zn1-O4	2.039 (3)	Zn2-O13	2.040 (3)
Zn1-O11	2.107 (3)	Zn2-N2	2.070 (4)
Zn1-N1	2.113 (3)	Zn2-O21	2.103 (3)
$O3-Zn1-O23^{i}$	99.90 (14)	O1-Zn2-O2	113.39 (16)
O3-Zn1-O4	102.40 (13)	O1-Zn2-O13	99.80 (15)
O23 ⁱ -Zn1-O4	91.22 (13)	O2-Zn2-O13	89.91 (14)
O3-Zn1-O11	106.09 (13)	O1-Zn2-N2	110.78 (16)
O23 ⁱ -Zn1-O11	83.20 (12)	O2-Zn2-N2	135.66 (16)
O4-Zn1-O11	151.49 (14)	O13-Zn2-N2	86.40 (13)
O3-Zn1-N1	99.89 (13)	O1-Zn2-O21	102.65 (15)
O23 ⁱ -Zn1-N1	156.01 (14)	O2-Zn2-O21	88.50 (14)
O4-Zn1-N1	97.65 (13)	O13-Zn2-O21	156.16 (14)
O11-Zn1-N1	78.38 (12)	N2-Zn2-O21	78.25 (13)

Symmetry code: (i) 1 - x, 1 - y, -z.

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a grant from the National Natural Science Foundation of China.

References

- Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (1999). Angew. Chem. Int. Ed. Engl. 38, 153–156.
- Groenman, R. H., MacGillivery, L. R. & Atwood, J. L. (1999). *Inorg. Chem.* 38, 208–209.
- Hagrman, D., Hagrman, P. J. & Zubieta, J. (1999). Angew. Chem. Int. Ed. Engl. 38, 3165–3168.
- Li, H., Eddaoudi, M. O. & Yaghi, O. M. (1999). Nature, 402, 276-279.
- Li, H., Davis, C. E., Groy, T. L., Kelley, D. G. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 2186–2187.
- Liang, Y. C., Cao, R., Su, W. P. & Hong, M. C. (2000). Angew. Chem. Int. Ed. Engl. **39**, 3304–3306.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). *SHELXTL*. Version 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.